Run-8 Polarized Protons Plan

Christoph Montag

RHIC Spin Collaboration Meeting, November 30, 2007

The goal for Run-8 and beyond

• Achieved $\mathcal{L}_{\text{store, avg}} = 20 \cdot 10^{30} \, \text{cm}^{-2} \text{sec}^{-1}$ in Run-6

•
$$\mathcal{L}_{\text{store, avg}} = 40 \cdot 10^{30} \, \text{cm}^{-2} \text{sec}^{-1}$$
 in Run-8, $\mathcal{L}_{\text{store, avg}} = 60 \cdot 10^{30} \, \text{cm}^{-2} \text{sec}^{-1}$ in Run-9

 Maintain polarization transmission in RHIC (presently close to 100 percent up to 100 GeV)

Overcoming the beam-beam limit

- In Run-6, luminosity performance was limited by the beam-beam tuneshift. Depending on the exact working point, one beam always suffered due to the vicinity of the $Q_x=2/3$ resonance.
- To overcome this, a new working point near the integer will be commissioned in the blue ring.

Polarized Protons Working Points

Yellow: $(Q_x, Q_y) = .695, .685$ (as in Run-6)

Blue: $(Q_x, Q_y) = .96, .95$ (at store, near-integer working point)

Near-integer working point will be operationally challenging

Operational challenges near the integer

Orbit and β -beat will be more sensitive at near-integer tunes, and will in fact be strongly tune-dependent

ightarrow Stay away from the integer during the ramp as much as possible

 \to Ramp tunes: $(Q_x, Q_y) = .885, .895$ (between 7/8 and 9/10)

Tune/coupling feedback/replay is a must to keep tunes under control

Persistent current drifts at injection may push tunes outside that narrow window between 7/8 and 9/10

Need feed-forward to counteract these drifts

Feed-forward has to be commissioned during d-Au run to be ready for polarized protons

 β -beat becomes worse at near-integer tunes, since it scales as $1/\sin(2\pi Q)$

Optics correction (at store) is a must, both globally (harmonic correction) and locally

→ Test/commission during d-Au run, at near-integer tunes (injection only) β^* -knobs are expected to be a useful tool to optimize luminosity and/or correct β -beat at the IPs

Tested in APEX sessions a few years ago (W. Wittmer et al.), but never made operational as a "knob"

Dynamic "knobs" desirable that can be changed operationally

What else can be done to increase luminosity?

Luminosity formula:

$$\mathcal{L} = \frac{N^2 f_c}{4\pi\epsilon\beta^*}$$

Collision frequency f_c is already maximized (111 bunches). Remaining "free" parameters are bunch intensity N, emittance ϵ , and β^* .

What are the limitations on these?

Beam-beam formula:

$$\xi = \frac{r_0 N \beta^*}{4\pi \gamma \sigma^2}$$
$$= \frac{r_0 N}{4\pi \gamma \epsilon}$$

Beam-beam is independent of β^* .

 \Rightarrow squeeze β^* as much as possible.

Limitations on β^* :

- magnet strength and triplet aperture
- hourglass effect (need shorter bunches)

Aperture limitations

The smaller β^* , the larger β becomes in the triplets

Triplets become the limiting aperture

Halo gets scraped away by the triplets during the squeeze

→ Collimation on the ramp required

Hourglass effect

Luminosity reduction due to hourglass effect:

$$R = \frac{\mathcal{L}}{\mathcal{L}_0} = \int_{-\infty}^{\infty} \frac{\mathrm{d}t}{\sqrt{\pi}} \frac{\exp(-t^2)}{1 + \frac{\sigma_z^2}{\beta^2} t^2}$$

For $\sigma_z = 0.75 \,\mathrm{m}$, this factor becomes:

0.83 at
$$\beta^* = 1.0 \,\mathrm{m}$$

0.76 at
$$\beta^* = 0.75 \,\mathrm{m}$$

0.64 at
$$\beta^* = 0.5 \,\mathrm{m}$$

 \rightarrow squeezing from $\beta^* = 1.0 \,\text{m}$ to $\beta^* = 0.5 \,\text{m}$ results in only 50 percent improvement, not a factor 2. But...

9 MHz cavity

- A new 9 MHz RF cavity has been installed for pp acceleration
- This will result in ≈factor 2 smaller longitudinal emittance
- Bunch length σ_z will be smaller by $\sqrt{2}$
- Hourglass factor for $\beta^* = 0.5 \,\mathrm{m}$ and $\sigma_z = 0.5 \,\mathrm{m}$ is R = 0.76
- \rightarrow Together with the squeeze to $\beta^* = 0.5 \,\mathrm{m}$, this would increase the luminosity by a factor 1.8

Necessary tools for Run-8

- Nonlinear chromaticity correction to reduce tune footprint, which can then be filled up by beam-beam
- Tune feedback, with full replay capability
- Local and global (harmonic) β -beat correction
- 10 Hz IR orbit feedback to counteract larger oscillations at near-integer tunes
- ullet Collimation on the ramp for tighter eta^* squeeze

A few words about 250 GeV running

- Based on experience in Run-6, a week should be sufficient to set up collisions at 250 GeV
- We need to stay away from (late) June, to avoid weatherrelated power supply problems
- A pure machine development run seems not very efficient; should be coupled with some sort of physics run instead

Projected luminosity should scale with energy:

$$\mathcal{L}(250\,\text{GeV}) = 2.5 \cdot \mathcal{L}(100\,\text{GeV})$$

 Physics run needs to be long enough not only to take meaningful physics data, but also to measure polarization to sufficient accuracy, using the jet

Summary

- New near-integer working point in Blue is expected to increase the beam-beam limit
- Near-integer tunes are operationally challenging and require new tools that are currently being developed and will be tested with d-Au
- Nonlinear chromaticity correction will free some tune space that can subsequently be filled up by beam-beam tunespread
- Tighter β^* -squeeze together with shorter bunches can significantly increase the luminosity; requires collimation on the ramp; to be tested during d-Au APEX